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The Zeeman effect for the relativistic bound state 
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School of Physics and Astronomy. Raymond and Beverly Sackler Faculty of Exact Sciences, 
Tel Aviv Universicy, Ramat Avw, Israel 

Received 19 December 1994 

Abstract. In the context of a relativistic quantum mechmics with invSant evolution parameter. 
solutions for [he relativistic bound-state problem have been found. which yield a spectrum for 
the t d  mass coinciding with the non-relativistic Sclufidinger energy spectrum. These speclra 
were obtained by chwsing an a r b i m  spacelike unit vector nc and restricting the support of 
the eigenfunctions in spacetime to the subspace of he Minkowsld measure space, for which 
( x l ) ?  = [x  - (x . n)nI2 > 0. In this paper. we examine the normal %eman effect (in lowest 
order) for these bound states, which requires np to be a dynamical quantity. We recover the 
usual Zeeman splitting in a manifestly covariant form. 

1. Introduction 

A relativistically covariant quantum mechanical formulation of the two-body bound-state 
problem has posed serious problems for many years. The Bakamjian-Thomas [ I ]  formalism, 
using the square-root relation between energy and momentum with the particle on mass-shell, 
for example, poses the difficulty of separating centre-of-mass motion for Iocal potentials, 
in addition to analyticity problems and questions of how to define the interaction terms 
(generally, one uses a power series expansion of the square-root expressions [Z]). 

A formulation of this problem in terms of Stueckelberg’s method of using off-shell 
kinematics [3], with an invariant evolution parameter, generalized to the case of two or 
more particles by Honvitz and Puon [41, was shown to yield an understanding of the 
Schrodinger spectrum for (spinless) hydrogen (and other central potential problems), with 
relativistic corrections, by Arshansky and Honvitz [SI. The wavefunctions provided by this 
method are exact solutions of a Poincar6 invariant Schrodinger-type equation, and form an 
(induced) representation of the Lorentz group [6]. Although extending the symmetry from 
the O(3) of the non-relativistic problem to the O(3, 1) of the relativistic case introduces 
new quantum numbers, the spectrum is degenerate with respect to these new degrees of 
freedom if they are not coupled through new interactions, as in the models treated above. 
Moreover, dipole radiation, emitted in transitions among these bound states, obeys selection 
rules which are formally identical to those of the non-relativistic problem but with covariant 
interpretation [7]. 

The appearance of a selection rule for the ‘magnetic’ quantum number-with respect to 
which the spectrum is degenerate-leads us to consider lifting this degeneracy through the 
normal Zeeman effect. In the non-relativistic treatment of the Zeeman effect, the degeneracy 
of the energy levels, associated with the rotation invariance of the Hamiltonian, is lifted 
by placing the state in an external magnetic field which provides a preferred direction 
in space and breaks the rotation invariance. In the relativistic treatment presented here, 
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the degeneracy of the spectrum is associated with the Lorentz invariance of the evolution 
operator, and may be l i e d  by placing the state in an external magnetic field which provides 
a preferred direction in spacetime. In this paper we shall demonstrate how, to lowest order, 
we may couple the magnetic field to the orbital angular momentum of the bound state and 
obtain a covariant formulation of the usual Zeeman splitting. Since the angular momentum 
operators for the bound states are in the rotation subgroup of the induced Lorentz group, 
the derivation of the normal Zeeman effect provides an insight into the geometry of the 
induced representation. 

M C Land and L P Honvitz 

It has been shown [SI that the replacement 

r = J-i -+ p = J(r1 - T*)* - (tl - t2)2 (1.1) 
in the argument of the usual central force potentials of non-relativistic mechanics leads 
to a relativistic problem, whose Galilean limit is the original non-relativistic central force 
problem (the correspondence is established by the fact that tl + t~ in this limit). In the 
context of the relativistic quantum mcchanics with invariant evolution parameter [3, 4, 81 
referred to above, the resulting mass spectrum coincides with the non-relativistic Schrodinger 
energy spectrum. It then follows, as we show below, that for small excitations, the 
corresponding energy spectrum is that of the non-relativistic Schrodinger theory with 
relativistic corrections. These spectra are obtained when one chooses a spacelie unit vector 
nP (gPu = diag(-I, 1,1,1) j. n2 = +1) and restricts the support of the eigenfunctions in 
spacetime to the subspace of the Minkowski measure space corresponding to the condition 

(~1)' = [ x  - ( x  . n)n12 o ( 1.2) 
where we denote by x = x p  the relative coordinates xf - x;, for the two-body system, and 
xz = x @ x # .  The restricted space, called the RMS (restricted Minkowski space), is transitive 
and invariant under the O(2 , l )  subgroup of O(3,I)  leaving np invariant and translations 
along nP. 

The two-body (Poincark invariant) Hamiltonian in this theory, 
P PlPPl + PzPP; " ( p )  K=- 

2MI 2M2 (1.3) 

is quadratic in the 4-momenta, and one may separate variables of the centre-of-mass motion 
and relative motion in the same way as in the non-relativistic theory, 

where 
P' = p:  + p ;  M = M I  + Mz 

(1.5) 
P -  Ir - ( M z p y  - M , p ; ) / M  m = M I M z / M .  

In [SI, np was chosen to be the z-axis, and the relative Hamiltonian 

(1.6) 

was expressed in terms of coordinates with the parametrization 

yo = psinhpsin6 
yz = p cosh ,B sin 0 sin@ 

y 1  = p cosh p sin6 cos 4 
y 3  = pcos6 

(1.7) 

for which 

( Y Y  + Cv*Y - (YOY > 0 .  ( 1.8) 
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It was shown in [5, 61 that the eigenfunctions of form irreducible representations of 
SLI(l,l)-in the double covering of O(2,  I)-parametrized by the spacelike vector n, 
stabilized by this particular O(2.  1) .  We remark that the spectrum of Krc, emerges in 
measurements of the total two-body energy of the system through the relations (1.4) and 
(1.6). In the centre-of-momentum frame, only the total energy contributes to the first term 
of (1.4), which we can then write as (we write the velocity of light c explicitly here) 

(1.9) 
Using the asymptotic value K % -$, obtained from (1.3) if V ( p )  is  negligible and the 
particles are asymptotically ‘on shell’, i.e. pppl,, % -m?c2, the energy spectrum, for values 
K:ec of 

E’ = 2mcZ(~,,r - K ) .  

small compared to the total mass, is given by 

(1.10) 

The terms in a($) are relativistic corrections. 
In [6], an induced representation of SL(2, C )  was constructed, by applying the Lorentz 

group to the RMS coordinates x@ and the frame orientation np,  and studying the action on 
these wavefunctious. One first observes that wavefunctions with support on 

(1.11) 
may be written as functions of np and the coordinates of a standard frame y E R M S ( ~ @ )  
since, given the Lorentz transformation L such that r l  = L(n) n ,  it follows that 

By choosing > = (O,O, 0, 1) as in [5], the parametrization (1.7) may be used for y”. Now, 
under Lorentz transformations labelled by A, the wavefunctions were shown to transform 
as 

(1.13) 
where A acts directly on np. The representations are moved on an orbit generated by this 
spacelike vector, and the Lorentz transformations act on y’ through the O(2, l )  little group, 
represented by D-’(A,  n). with the property 

(1.14) 
The matrix L‘(n) was chosen in [6] to be a boost in the three-direction, a rotation about 
the two-axis, followed by a rotation about the 1-axis. Thus, 

x E w s ( n r )  = (x 1 [x - (x n)nlz 0) 

x E RMS(n,) and y = L(n) x y E R M S ( & ) .  (1.12) 

M y )  + +:(Y) = @ ~ - d D - ’ ( A , n ) y )  

D-’ (A ,  n) i = L(An) A L ’ (n ) i  = A .  

L T ( ~ )  = e ~ M i l e ~ M ” e ~ M ”  

where 
( M U A ) W ”  = g U ! J z g ” Y - g ( r Y g A l (  

and so 

LC’(n) = 

cosh ol 0 
-sinw sinhol cos 0 

sin y cos w sinh CY 

cosy cos w sinh (I 
sin y sinw 
cos y sinw 

which provides the parametrization of nLI as 
sinha 

-sin w cosh CY 

sin y cos w coshol 
cos y cos w cosh (Y 

(1.15) 

(1.16) 

(1.17) 

0 siuh ol 

0 - sin OJ cosh CY 

cosy sin y cosw coshol 
-sin y COS y coso cosha 

(1.18) 
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By examining the generators h,p(n) of (1.13), which form a representation of the O ( 3 , l )  
Lie algebra (through their action on y and n), the Casimir operators 

M C Lond and L P Honvitz 

= &-(n)h“p(n) = +‘~yah.p(n)hYdn) (1.19) 

2 U a 
as well as the operators of the SU (2) subgroup 

(1.20) L (n) = $hi,(n)h’j(n) Ll(n) = h ( n )  = -i- 

can be constructed as a commuting set. Moreover, the operator 

A = ~ M @ ~ M , ,  2 + e(e+ I) - (1.21) 

where M u  = ypp”  - y”p’, and the O(2, 1) Casimir N 2  = + (M”)2 + ( M ’ 2 ) 2  
commute with this set. Wavefunctions were then constructed which are eigenfunctions of 
the set 

I A . N 2 , i ~ , h . L 2 ( n ) , L ~ ( n ) )  (1 2 2 )  

with eigenvalues Q = {t(e + 1) - 2, n2 - $, CI, cz, L ( L  -t l ) ,  q]. The requirement that 
these wavefunctions lie in a unitary irreducible representation of S L ( 2 .  C) (they are in the 
principal series), imposes the condition cl = i2 - 1 - c&’h’, where r? = n + 4. 

The remainins ‘radial’ function, after the transformation k ( p )  = R(p)/&j of the radial 
part of @n(y) ,  must then satisfy an equation which is precisely of the form of the non- 
relativistic Schrodinger radial equation in three dimensions (and has the same normalization). 
The states @.(y) are then eigenstates of the Lorentz invariant Kre,, whose support is on 
RMS(n). with the quantum numbers (1.23, and a principal quantum number n,. In particular, 
the solutions for the problem corresponding to the Coulomb potential [5] yield bound states 
with a mass spectrum which coincides with the non-relativistic Schrodinger energy spectrum. 
The observed energies for such systems are determined by the values of PPP,,, i.e. -EZ in 
the centre-of-momentum frame; from (1.4) one obtains, as noted in ( L l O ) ,  in an expansion 
in orders of 1/c2, the non-relativistic spectrum with relativistic corrections. 

The selection d e s  for dipole radiation from these states have been calculated [7] and 
have been shown to be identical with those of the usual non-relativistic theory, expressed 
in a manifestly covariant form, 

(1 23)  
In addition to the transverse and longitudinal polarizations of the non-relativistic theory, 
there is a ‘scalar’ transition, induced by the relative time coordinate. The ‘scalar’ polarization 
and the longitudinal polarization induce the same Aq = 0 transition for the relativistic case, 
which has a natural interpretation in terms of the Gupta-Bleuler quantization of the photon. 
This relationship shows that the wavefunctions act correctly as representations of the the 
Lorentz group. Moreover, it was shown in 171 that the change in q. the eigenvalue of 
Ll(n), corresponds to a change in the orientation of n,, with respect to the polarization 
of the emitted or absorbed photon. That the magnetic quantum number q depends on the 
frame orientation should not be surprising, because the operator Ll(n) belongs to the S U ( 2 )  
subgroup of SL(2, C), and acts on n p ,  but not on the RMS coordinates (il was shown in 171 
that for A a rotation about the I-axis, D-’(A,  n)  = 1). 

In this paper, we provide a derivation of the Zeeman effect for the bound states, which 
requires allowing np to become a dynamical quantity. We begin with a discussion of 
the classical O(3 ,  1) in the induced representation and obtain the group generators, which 
coincide with those of [6], when the momenta are understood as derivatives in the Poisson 
bracket sense. We construct a classical Lagrangian, in which nP plays an explicit dynamical 

( A t  = +1: Aq = O , f l ] .  
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role, and show that the generators are conserved. We then construct the Hamiltonian, which 
may be unambiguously quantized and made locally gauge invariant. Finally. it is shown 
that an external gauge field representing a constant magnetic field induces a mass level 
splitting corresponding to the usual non-relativistic expression. 

2. The configuration space 

We shall be interested, in this section, in the classical relativistic mechanics of events of 
spacelike separation. We characterize the separation vectors by the coordinates ( n ,  y ) ,  where 
n is the spacelike unit vector parametrized in (1.18); y E RMS(A) is parametrized in (1.7) 
(note that L'(n)y E RMS(n)) and satisfies (1.2). 

Under a Lorentz transformation A, we know that 

n + n' = A n  x + x ' = A x .  (2.1) 

(2.2) 

(2.3) 

It follows from (1.12) and (2.1) that 
x' = A x  = AL(n)T y = L ( A n f L ( A n )  A L(n)T y = L(n r T  ) y t . 

Thus y transforms as 
y + y' = D - ' ( A ,  n )  y 

where (as in (1.14)) D - ' ( A , n )  = L(An)hL(n)T  belongs to the O(2. 1) which leaves A 
invariant, i.e. 

D - ' ( A , n ) A  = L ( A n ) A L ( n ) ' A  = A  (2.4) 

and hence the relation (1.8) is preserved. The coordinates thus transform as 

A : (n.  y )  --t (n ,  y)' = (An,  D - ' ( A ,  n ) y ) .  (2.3 

We wish now to construct a model for the Zeeman effect in this covarian; framework. 
To do this, we recall that in the computation of the selection rules for radiative processes, as 
we remarked above, the restriction Aq = 0, & I  refers to a reaction of the radiation on the 
orientation of the coset label n" of the induced representation. In the dipole approximation, 
the transition operator is x",  and in 171, we demonstrated that the conservation of the 
eigenvalues L and n in the matrix elements of xC implies the vanishing of the matrix 
element (e'n'l sinelen), leaving only the terms containing (Pnl cos#/en) in the calculations. 
Since this term arises only from the y3 = p cos6 component of y", the terms of xp which 
contribute to these matrix elements are of the form &(n)3ry3. The 3-column of LT is 
precisely np,  so the calculation factors as 

(n,,e'n'L'g'c;Ix"In,enLqcz) = (n..e'n'L'q'c;lp cos e n" In,tnLqcz) 
= (n.d'lp In.!) (e'n I cos 8 [en) {n'L'q'c;ln'InLqcz) 
= (n,-e'lplnoe)(e'nl coselen) (nLq'czIn"InLqc2) 

x 8"". 8'r S(c2 - c;, . (2.6) 
Since 1n.e) refers to the radial functions and the functions len) are the usual spherical 
harmonics, (2.6) shows directly that it is the orientation of np which determines the transition 
in q .  

We deduce from this result that the vector nP must be effectively coupled to the radiation 
field, and we shall build our model for coupling to the electromagnetic field by adding to 
the Lagrangian a kinetic term for the evolution of f l P  which, with minimal gauge invariance, 
provides the Zeeman coupling. 
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The velocify ti = dn/dr transforms just as n does, since T is invariant: 

n ' = A n  ==+ ? ? = A n  (2.7) 
but since f (n) is now r-dependent, the transformation of y is more complicated. We may 
write 

y = f (n ( s ) )  x =+ j = f ( n ) i  + &n)x (2.8) 
x = ~ ( n ( r ) ) '  y ==+ .i = f(n)'y + t (n ) ' y  (2.9) 

and we see that since d/ds and the Lorentz transformation commute, (2.8) is, in fact, form 
invariant: 

(3)' = L(n')i' + t (n')x'  
= L ( A n ) [ A i l +  & b ) [ A x ]  
= f ( A  n)A[f(n)'? + &n)'y] + f?(An)[AC(n))' y ]  
= [L(An)Af(n)'] j  + [L(An)Af?(n)' + f?(A n)Af(n)) ' ]y  
= D - ' ( A .  n)y + 6-' (A,  n )  y 

d 
d s  = - [ D - ' ( A , n ) y ] .  (2.10) 

The phase space (which must include n and Q transforms as 
A : {(n,y); (ri.y)] -+ ((An, D - ' ( A , n ) y ) ;  (hi ,  D - ' ( A , n ) y +  b - ' ( A , n ) y ) ] .  

take 

(2.11) 
We now examine the generators of the Lorentz transformation represented in (2.5). We 

A =  l+A+o(A2) (2.12) 

and write h as 

h = &o,pMU8 (2.13) 
where 0 ~ 0 ,  a, p = 0,. . . , 3  is (infinitesimal) antisymmetric. The matrix generators 

(2.14) 

are those given in (1.16). According to (2.12) and (2.13). (2.5) becomes 

A : (n. y) -+ 

Defining the generators of F = (n, y) -P <' = (n', y') as 
(n, y)' = (n + A n ,  f ( n  + An)(l+ A)L(n)'y) + o(w2).  (2.15) 

(2.16) 

wherefor; = 1, ..., 4, t i  = n P ,  /* = 0,. . . ,3 ,  and fori  = 5 , .  . . ,8,$ 1 -  - y P , p = 0,. , . , 3 .  
Thus, for i = 1.. . . ,4 ,  

(2.17) 
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so that 

a 
= (&gap - g ; fg .&”G 

a a 
ana anp 

- - np- - n e - -  

which was called d(h,p) in /6]. 
Now for i = 5 , .  . . ,8, 

where we have used the fact that 

Thus, we find that 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Using equation (1.16) for Map, we obtain 

(2.22) 

which was called g(A-8) in [61. So finally, we obtain 

(2.23) 
which was called ih,(h,p) in [6]. It was shown that these generators satisfy the Lie algebra 
of SL(2,  C). We will maintain the matrix notation for Map so that (2.23) may be written 
as 
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(which by (2.20) are antisymmetric) equation (2.24) becomes 

M C Land and L P Honvitz 

X,B = - [yrIC(n)M,pC’lV, + n,(M,+d””[y‘&V, + (Vn)J} . (2.26) 

3. Classical and quantum mechanics of the generalized phase space 

For classical dynamical systems whose potential depends only on p (given by (l.l)), we 
would like to write a Lagrangian for the reduced ‘I-body problem’ which includes an 
explicit kinetic term for n. A possible choice is 

L = $niz + i~ii ’  - v(x2) (3.1) 

where A is a length scale required because n is a unit vector. Notice that when ii = 0, 
the dynamics depend only on i for fixed n, and so the relative coordinate remains within 
RMS(n). Rewriting (2.9) as 

(3.2) 

(3.3) 

f = c’y + t’y = Lqy + C?yJ 

we may write (3.1) in the form 

L = p [ y  I t LL ‘T y] 2 t ;Ai*  - V ( X * ) .  

By construction, (3.3) is Lorentz invariant, and so is invariant under the transformations 
induced by (2.26). Therefore, applying Noether’s theorem 

(3.4) 

where the first term vanishes for solutions to the Euler-Lagrange equation, and taking the 
variation to be SE‘ = $@X,p e‘ ,  one obtains the conservation law 

d 
d r  -[p’X,py” + + X W p , l  = 0 (3.5) 

where 

using the notation p ,  for the variable conjugate to y” (for each n”). Since the variables y” 
are bounded by the RMS parametrization (1.7), the pp are symmetric but not self-adjoint. 
These operators. however, occur in combinations which have self-adjoint extensions. We 
discuss these questions elsewhere. Using equation (2.26) for X,p, (3 .5)  becomes 

(3.7) 

If we understand n,, in the Poisson bracket sense, as a derivative with respect to np, then 
the quantum operators h,(b,o) of [6] now appear as classical constants of the motion for 
the Lagrangian (3.1). 

To obtain the Hamiltonian, we first observe that C depends on r only through n,  so 

d 
d r  -{y‘C(n)M,pCTp+ n,(Map)p””lyTS,p + 7 ~ ~ 1 )  = 0. 
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Applying equation (3.6) to (3.3), 
aL 

p =-=In [ j P  + ( ~ t ‘ y ) , , ~  * p = m [ y  + r i ” ~ , y l  (3.9) 
fl ay. 

and 

(3.10) a L  a . .  T x - - = AA, + m [ y  + r i ” ~ , y ] ~ - [ y  + n ” ~ , y l =  AA,, - y ~ , , p  - anr anp 
where we used (3.9) and the antisymmehy of S, to obtain (3.10). Equations (3.9) and 
(3.10) may be inverted to eliminate (A, i): 

1 
A, = pc, + y rS,Pl 

. 1  1 1 
m m h  

(3.11) 

and 

(3.12) y = - p  -nfis,y = - p  - -[xu + yTSf lp lS ,y  

which may be used to write the Hamiltonian as 

(3.13) 

Since SP is antisymmetric, we may regard (3.13) as a quantum Hamiltonian without 

P a  1 + -(n” + YTS’P)(7rP + YTS,P) + v . - _  - 
hi 2h 

ordering ambiguity in the operator y r S P p .  The Schrodingeer equation is then 

1 1 iaz$ = K $  = - + --(+ + ) J s ~ p ) ( ~ ~  + y T s P p )  + v $ (3.14) [ap,: 2h 
where we take as quantum operators 

(3.15) 

We require that (3.14) be locally gauge invariant in the coordinate space (n, y ) ,  that is, 
under transformations of the form 

$ e-ieQ(n.).) @ (3.16) 

a 
P ,  = ’@ - anr x -i-. 

a 

this can be accomplished through the minimal coupling prescription 

pa 3 p - eA(”) xP - nP - exP (3.17) P P 

together with the requirement that under gauge transformation 

--t X P +  - + Y T S  V Q .  (3.18) x, 
Note that A t )  transforms under O(3, 1) as an induced (over O(2, 1)) representation; it 
transforms as p P  under Lorentz transformations (i.e. under the O(2, 1) little group) and so, 
since the Maxwell equations are Lorentz invariant, i t  satisfies the Maxwell equation in the 
yP variables. Under the gauge transformation 
(P - eA(n)’)e-ie@,,, = (3.19) 

4 a 
ay [a:# A‘”) t A!) + -Q P 

+ e v , ~  - e ~ ( n ) ’ ) $  = e-ie@(p - e A ( n ) ) $  
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and 
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(3.20) 
) 

a 
' S  p - exL)e-icQ+ = e+' IT, + y ' ~ , p  + e-@ + eyTS,V,@ -ex; + ( anu ( % + Y  P 

= e-'"(z,, + y ' ~ , p  - e x p ) +  
so that the gauge invariant form of (3.14) is 

ia,+ = K + =  - ~ p - e A ' n ~ ) Z + - ( ~ P f y ' S P p - e ~ ' ) ( ~ p + y T S , p - e ~ r ) + V  +.  
(3.21) 

Consider the derivative operator which acts on O(n, y) in the transformation of the 
gauge field xu in (3.18). We denote this operator by 

D, = (Vdg + y'S,V, (3.22) 

and we notice that D, also appears in the Lorentz generators X o ~  (2.26). From (3.11) we 
see that D, may be regarded as the quantum operator corresponding to An. Using equation 
(3.22) in (2.26), the generators assume the simpler form 

1 1 1. im 2h 

x a p  = -(Y'~L(n)MmPL% +n,(M,p)""D,J 
= -{x'M,pV, + n,(M,+dPYDu) (3.23) 

which, in light of (3.1 I )  and the definitions of p ,  and IT,, suggests the analogue 

X,p - i[x'M,@(mf) + nTMmp(hri)ll (3.24) 

In fact, using (3.9) and (3.11) in (3.7), we find for the classical conservation law, that 
d - ()"L(n)MapfTp + ng(Map)'"[~'Svp + ~ v l }  = O  dr 

d 
d r  

= - ( m  xrM,p[L'y + L f y l +  n'(M,p)[Anl] 

d 
d r  = - (xTM.p[mil + n'(M,p)[Anl] (3.25) 

providing the generators with the form of a generalized angular momentum in terms of the 
relative Minkowski variables and the frame orientation variables. 

The Hamiltonian (3.13) also assumes a simple form when expressed in terms of (3.22): 

(3.26) 

Suppose that a function f (n, y )  is defined in such a way that its dependence on n is 
only through .C(n)'y (which is to say that f is a function of x alone, even as n varies in 
5). Then we find that 

(3.27) 

and 

(3.28) 
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so that 
a 

D , f =  -+YTS v f (an. 4 

where we have used (2.20). Thus, D, acts as a kind of covariant derivative which vanishes 
on functions of x alone. In particular, D, vanishes on the eigenstates discussed in [5, 61, 
in which case the Hamiltonian (3.13) and (3.26) reduces to the RMS Hamiltonian discussed 
in [5]. The dynamical effects that we shall discuss in the next section are associated with 
the evolution of the wavefunction of the system to a form which does not depend only on 
X" . 

Notice also that 

= ( T i .  v, + y .v, - i .  VJ . 
We may rewrite this expression as 

dx . V, +dn"D, = dy , V, +dn . V, 

(3.30) 

(3.31) 
which shows in yet another way that V, and D, generate the changes induced by dr and 
dn (with x @  held constant), just as V, and 0, generate the changes induced by dy and dn 
(with yw held constant). 

It will be useful to examine the classical Lagrangian in the presence of the fields A t '  
and xw. which we may find by treating the Hamiltonian in (3.21) as a classical functional 
and evaluating 

and 
a 1 1 a 

a P  m h ax, yr = K = -(pw - eAE)) + -(xu + yTS,p - eX,)-(yrSYp) 

(3.33) = - ( P o  1 - .?At ' )  - it,(S"),,y I . 
m 

Recalling (3.8), we find that 
L = p . j + n . n  - K  

(3.34) = f m [ y  + CL ' T  y] 2 + ?In 1 . 2  + e [ ( y  + Ck'y) , A(") + ri . x ]  - V ( x 2 ) .  



3300 

From equation (3.2), we have 

M C Land and L P Horwiiz 

j' + C P Y  = ci (3.35) 

so that we may write (3.34) in the form 

L = ; m i 2  + 5 x 2  + e [ i  . (PA(")) +A. XI - ~(2). (3.36) 

In order for L to be a Lorentz scalar, CrA'"' must transform under the full Lorentz group 
O(3, I). Since A(") was introduced as a field which transforms under the O(2, 1) little 
group, we may write 

A(")' = D-'(A,  n)A'"' = C(An)  ALr(n)A") j CT (An)A(")' = A .C'(n)A'"' 

verifying that the combination .CrA(") transforms as a 4-vector under A. 

(3.37) 

4. The Zeeman effect 

In [6], the spacelike vector n played no particular role in the dynamics and could be chosen 
arbitrarily, because the systems under discussion were O(3, I)-symmetric and no direction 
in spacetime was intrinsic to the problem (other than the axis of the bound state). That 
situation generalizes the non-relativistic spherically symmetric central force problem, in 
which the absence of a preferred direction in space leads to the degeneracy of the energy 
spectrum with respect to the magnetic quantum number (which characterizes the orientation 
of the angular momentum). In [71, i t  was shown that the vector n plays a role in dipole 
radiation from the bound state, because conservation of angular momentum and the spin-I 
nature of the electromagnetic field impose an orientation dependence on the interaction. 
Thus, the photon carries o f f  spin provided by the bound-state transition, and that transition 
depends on the orientation of the angular momentum of the state (determined by n) and the 
photon polarization. 

In the Zeeman effect, one lifts the degeneracy of the bound-state spectrum by placing 
the state in a constant external magnetic field, which interacts with the magnetic moment 
(angular momentum) of the system and thereby provides a preferred direction in space. In 
the semiclassical picture, the atom will tend to rotate. The interaction angular momentum 
is intimately connected with the rotation generators, and for the bound states discussed 
here, these generators are elements of the rotation subgroup of the induced representation 
of U(3, 1). Since the rotation group O(3) C O ( 3 , l )  acts on the vector n as well as the 
RMs variables y, the relativistic Zeeman effect can clearly only be described in the context 
of a theory which explicitly permits the generators to act directly on all the variables in 
the theory. In this section, we provide such a description in the context of the Hamiltonian 
theory given in the section 4. 

In the non-relativistic case, the Zeeman effect is obtained as a first order perturbation 
of the hydrogen atom bound state, by a vector potential 

A(T) = -1B x T (4.1) 

which leads to the constant magnetic field 

(4.2) 
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The Hamiltonian becomes 
1 
2m H = --(p - eA)Z + V 

e 

e 
2m 
e 

2m 
e 
2m 

= HO + ; A .  p + o(eZ) 

= Ho - - ( E  x T )  . p + o ( 2 )  

= Ho - -B. (T x p )  + o(e2)  

= HO - -B. L + o(e2) (4.3) 

where L = T x p is the angular momentum operator. Thus taking B in the direction of the 
diagonal angular momentum operator (usually the z-axis), the observed Zeeman splitting is 
obtained from (4.3) as 

(4.4) 
eB 
2m El, - Elng = El“ - - q .  

where q is the eigenvalue of the operator L,. 
In section 3, we introduced two gauge compensation fields, A t )  and xw,  required to 

make the Hamiltonian (3.13) locally gauge invariant. However, we now argue that just as n 
and y transform under inequivalent representations of the Lorentz group (y transforms under 
the 0(2 ,1)  little group induced by the action of the full O(3 ,  l)), so A t )  and xr must be 
seen as inequivalent representations of the usual U(1) gauge group of electromagnetism. In 
the full spacelike region, a constant electromagnetic field, F’”, can be represented through 
the vector potential 

A’(x) = - ~ F ” ” x , .  2 (4.5) 
We now restrict the support of A” to x E RMS(n) and express the vector potential as a 
vector oriented with RMS(;) by writing 

AF)(y) = LMvA“(LTy) = -iL,,F\L,“yA = -i(L:FLTy), . (4.6) 
For the field x,,, we choose (note that n undergoes Lorentz transform in the same way as 
X ) .  

(4.7) 
(here b is another length scale, required since A”(x) has units of length-’, so F; must 
have units of length-*, but x,, must be without units) and we use (4.6) and (4.7) in the 
Schrodinger equation (3.21): 

x,,(n) = b 2 A,(n) = -$b2F\nu 

1 T 1 
21. -@A‘”))’ + -(R’ + y7S”p - ex”) (x ,  + y S , p  - exM) + V $ 

(4.8) 
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where the first three terms of (4.8) are the unperturbed Hamiltonian KO. 
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The perturbation term to order o(e) ,  is 

= - - [ - ( C F C ' Y ) ~ P +  e l  b2 T F $ n Y ( n ,  + y T S g p ) ]  2 nr 

We now expand the electromagnetic field tensor on the basis of four by four antisymmetric 
tensors given by the Lorentz generators M'". Thus 

F =  $F!JuMpv (4.10) 

may be verified through 

( F )  - - .!F 2 JJ ,(Mru)@ = I F  2 P u g  ( JJU g W - g ~ J g y  = F @ .  (4.1 I )  
Using equation (4.10) in (4.9) we find that the perturbation term to order o(e) becomes 

(4.12) 
mbz 
1 

e 
4m 

yrCMuflCC'p + -n,,(MRb)!Jv(zu + y'S,p) 

We note that if l / b 2  = m ,  then we may write the first-order perturbation (using (3.23)) as 
e 

U P  !Ju (4.13) 
e - F.e[yr LM'pC'p + n , ( M  ) (n, + y r S , p ) ]  = - Fa#X@ . 4m 4m 

magnetic. In such a frame, the perturbation becomes 
For FPYFw, = 2(B2 - E') > 0, there exists a frame for which the interaction is purely 

where h(hk) are the three conserved generators of the S U ( 2 )  rotation subgroup of S L ( 2 ,  C) 
for the phase space { ( a ,  y ) ;  (n, p ) ] ,  that is, the angular momentum operator for the 
eigenstates of the induced representation. Notice that in the matrix element for unperturbed 
eigenstates, the second terms of (4.9) vanishes, so the relativistic Zeeman effect does not 
depend upon the values of h or b. 

In [6], the diagonal angular momentum operator is L l ( n )  = h(h1) = -ia/ay, and so if 
we take B = B(l,O, 0) then we find that 

eB 
2m 

KO + K = KO - -h(ii) (4.15) 

splits the mass levels of the bound states according to 

(4.16) 

In going from (4.15) to (4.16), we have used the fact that the unperturbed Hamiltonian 
of (4.8) reduces to the unperturbed Hamiltonian of [6]. Equation (4.16) further justifies 
the conclusion reached in 171 that q is the magnetic quantum number. Moreover, the 
manifest covariance of the formalism guarantees that the splitting of the spectrum will be 
independent ot tke observer. We observe that if F!J"F,,, < 0, we may find a frame in which 
the interaction is purely electric, leading to a covariant formulation of the Stark effect. Since 
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the electric field couples to the boost generators (which reduce to the position operator in the 
non-relativistic limit) and these generators are not diagonal in this representation, the Stark 
effect remains formally (one really has only a resonance spectrum; the bound states are 
destroyed by the non-compact generator) a second-order perturbation, and we will discuss 
it elsewhere. 

5. Multiplicity 

In this paper we have studied the normal Zeeman effect for the case of two particles 
without spin. As pointed out in [6], the quantum number q belongs to a representation in 
the double covering of the Lorentz group, which takes on, in fact, a half-integer value, and 
indicates even multiplicity for the normal Zeeman splittings. One would expect, from the 
non-relativistic theory, to find odd multiplicity for the normal Zeeman effect. This result 
constitutes a prediction of the theory, concerned with the structure and physical relevance of 
the Lorentz group representation obtained, as in 161, by extracting the induced representation 
of SL(2,  C) on the S U ( 1 , l )  little group of a spacelike vector (the covering of O(2,l ) ) .  

It is difficult to check this prediction at the present time, since two-body systems 
accessible to Zeeman splitting experiments generally consist of spin.; particles. The 
non-relativistic limit of the Zeeman multiplicity is very delicate, since the relativistic 
representations are highly degenerate. 

In the theory of spin-i particles, the representation of the Lorentz group is constructed 
by induction from the little group of a timelike vector [9]. This construction can be 
generalized to two or more particles, using the same timelike vector for every particle 
(not the momentum, as in the Wigner construction [IO]). The geometry of the case of 
two particles with spin is therefore quite different. The representation must be induced on 
the stability group of both a timelike and a spacelike vector, i.e. U(1). and the differential 
equation imposing definite values for the Casimir operators, involving both vectors, have 
a very different structure. The multiple connectedness of the O(2, 1) invariant spacetime 
support manifold of the two-body bound state no longer reflects the topology of the system. 

This problem is currently under investigation. 

6. Discussion 

As in the non-relativistic case, the discussion of the Zeeman effect exposes the relationship of 
physics and geometry in the relativistic bound state. In [5 ] ,  bound-state solutions were found 
for a Poincar.6 covariant generalization of the Schrodinger equation, with a mass spectrum 
corresponding to the non-relativistic energy spectrum (a notable failure of the Klein-Gordon 
theory with Z e z / r  potential [ 1 I]). A central feature of this model is that bound states are 
found only when the relative motion is restricted to the O(2, 1)  invariant region described 
by choosing an arbitrary spacelike direction n,  and requiring (~1)’ = [ x  - ( x  . n)nI2 0. 
Mathematically, this restriction is related to the existence of discrete unitary representations 
of the Lorentz group in this subspace [12]. Physically, this restriction leads to a lowering 
of the mass spectrum (cf [13]). Since these states form a representation of SU(I, I), it is 
possible to construct an induced representation of the full Lorentz group [6] by studying 
the action of Lorentz transformations on x and n together. Thus, the O(2. I )  stabilized 
direction n was seen to have kinematic-but not dynamical-significance, and remained 
arbitrary. However, in the study of dipole radiation from these bound states [7], it was 
shown that the diagonal component of angular momentum, related to np, would shift as a 
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result of photon emission. We argued that the component of spin carried off by the photon 
is provided by the bound state, through the action of the O ( 3 )  rotation subgroup of the 
induced O(3,  1). and therefore the photon must couple to n,. 

In this paper, we have examined the role of the spacelike direction n,, by constructing a 
model in which n,, is treated as a dynamical quantity at the classical and quantum levels. We 
build a configuration space consisting of the subspace orientation np and the parametrization 
variables of the subspace y”, and show that the generators of the Lorentz group on this 
space are identical to those obtained for the induced representation of O(3, 1) in [6]. We 
write a model Lagrangian containing a kinetic term for n, and Legendre transform it  to 
the Hamiltonian, whose quantum form is seen to contain the Hamiltonian used in (51, plus 
a term quadratic in a covariant derivative which vanishes on the bound states of [5 ,  61. 
By making this Hamiltonian locally gauge invariant, we introduce an interaction with the 
gauge field which couples to the momenta conjugate to y” and n,, thereby giving the 
orientation n,, a dynamical role. When the gauge potential is taken to represent a constant 
electromagnetic field, we find that the field interacts with the generators of the Lorentz group 
in much the same manner that the magnetic field interacts with the rotation generators in 
the corresponding non-relativistic problem. From these developments, it is clear that the 
only way to couple an external magnetic field to the magnetic moment of the bound state 
(represented by the rotation subgroup of the induced representation of the Lorentz group) 
is by treating n,, as a dynamical quantity. In the splitting, obtained here in a covariant 
form independent of the observer’s frame, the external magnetic field is coupled to q,  
the observable component of the angular momentum, which is given entirely by np and 
its derivatives. In the non-relativistic Zeeman effect, the degeneracy of the energy levels 
associated with the rotation invariance of the bound state is lifted by placing the state in a 
magnetic field which provides a preferred direction in space. In the relativistic treatment 
presented here, the degeneracy of the mass levels associated with the Lorentz invariance of 
the bound state is lifted by placing the state in a magnetic field which provides a preferred 
direction in spacetime. 

M C Land and L P Honvitz 
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